

Mimic Hunter 1 Tower Builder manual

Tower Builder

Quick reference & Manual
v0.9.7.0 [WIP] for Editor v1.01

1. Introduction

The Tower Builder is a versatile tool that lets you create any tower you want for Mimic Hunter in a very intuitive way.
Almost all functions we used to create the original game content are available to you to build and customize your own
hunting adventure!

Though most of the actual building is done in a point-and-click way, you’ll need basic scripting skills to create more
advanced interactions such as dialogs, puzzles, traps, triggers, or timed events. But don’t fret! Mimic Hunter uses a
lightweight LUA script interface with only a dozen commands to remember (all documented!) beside language basics
(that we won’t cover here—though we’ll include example scripts—, but you can find plenty online!)

You can test your tower on-the-fly with the Preview mode tool, and once finished, you can share it with other players
through Steam Workshop (or by simply giving them your tower file).

Let’s begin!

2. The Editor screen

The Editor screen has three main parts.

In the middle, you can see the tower just like you were in Play mode, and can interact with it: place, select, or remove
elements, based on what tool you have selected. You can use the horizontal movement controls to rotate the tower,
and the vertical movement controls to change your viewing elevation. You can also zoom in or out with the mouse
scroll wheel.

On the left you can find the Main toolbar. The tools are Walls (F1), Platforms (F2), Entities (F3), Inspector (F4)
and Overview (F5). The Walls, Platforms, and Entities tools enable you to place or remove elements of the respective
kind. The Inspector lets you to select any element that is already placed, and view/edit its special properties. The
Overview tool is basically a list of all important elements placed, featuring quick jump-to.

On the right is the Editor menu. Most things here are quite self-explanatory: you can create a new tower, load one,
save your current creation, or change global settings (such as lighting or the name of the tower). You can also enter
Preview mode here (see later).

Mimic Hunter 2 Tower Builder manual

3. Anatomy of a tower

All towers in Mimic Hunter have two main vertical parts: the wider “midtower” that starts on the ground, and the
leaner “peak” that starts on the top of the midtower. Height is primarily measured in stories; this is the exact height
of any and all wall elements, such as doors, torches, etc. All stories have the same height, and wall elements can be
only placed per exact stories, they can’t be offseted (unlike platforms and entities). (The player is approximately 0.75
stories tall.) When you create a new tower, you have to specify the height in stories for both the midtower and the
peak. The midtower can be 10-200 stories high, while the peak’s height can be set between 0-200 stories, enabling
you to disable it completely if you want to. Caution! Once a new tower has been created, you cannot modify its height!

Height offset inside a story is called elevation, with 0
being the bottom of the story, and 1 being the top. All
platforms (at least their colliders) are 0.25 units high.
The smallest usable subdivision for positioning via the
editor is 1:16 of a story’s height (0.0675 units); arbitrary
values can only be specified via scripting, though it is not
recommended in most cases. Adjacent platforms placed
with this smallest difference in elevation act as normal
stairs, without the need of manual jumping. In scripting,
elevation always refers to the top of a platform, but the
bottom of an entity (critter or item, except bats ).

On the horizontal axis, stories are divided into sections,
a.k.a. sides. The midtower has 24, while the peak has only
16 sections. Sections act as the “horizontal grid” for all
elements, including platforms and entities—nothing can
be offseted horizontally (i.e. entities are always placed at
the horizontal center of a section, and all platforms and
walls are exactly one section wide.)

4. Walls

Beside decorative elements, walls also include doors, mirrors, torches, switches, sewers, climbable elements, and alcoves.

By “wall” we always refer to special walls, as the tower itself is made of automatic “normal” walls with no special
visual features or functions. Thus, when you “create a wall,” the normal wall only becomes a special wall, and when
you remove one, it reverts to a normal wall. “Void” walls are also just special walls, not the logical absence of a wall!

To create a wall, select the Walls tool (F1), then pick a wall type from the palette, and simply left-click on a section on
the tower itself. You can paint over an existing wall, but any special properties you previously set (save the name) will
be lost. To remove a wall, simply right-click on it. Hold down the left control key when creating a wall to auto-paint
the whole story (excluding already custom-named walls) with your selection, or to remove a full story of special walls.

After you placed one or more walls you want to work with, switch to the Inspector tool (F4) and select the element
you want to edit. All walls have a name property, but except for doors, mirrors, torches, switches, and sewers, its only
function is to custom-identify the wall in the Overview for your convenience. Name can’t be null or empty.

4.1. Doors and mirrors

For a door or mirror to function properly, you have to set up a few special properties. Doors and mirrors have a target
property that identifies another door or mirror they transfer to. The target property refers to the name property of
the target. So, for example, if you want to set up a simple two-way door, name door #1 “door_1” and door #2 “door_2”,
and set door #1’s target property to “door_2”, and door #2’s to “door_1”. Simple! Caution! Names are unique. Use a
naming convention you find comfortable, yet precise enough not to get confused when you have many elements. (The
Overview tool will only show walls that have a user-specified name (not the default “Wall #XX_YY”), but the default
names also work as targets.)

You can also set the initial state of the door or mirror, which is quite self-explanatory.

Mimic Hunter 3 Tower Builder manual

During the game session, scripts are used to control doors, or events triggered by doors. Doors have two specific
events: when you (try to) enter one, and when you exit on the other side. To script an enter event, create a script file
named [name of the door].lua in the tower’s script path—if it exists, it will be automatically executed every time the
player tries to enter the door (if you want to limit this behavior, you have to set up your own conditions in the script).
When you exit on the other side, the script [name of the door]_d.lua will be executed (that is, name of the door you
entered!) To control (i.e. open/close) doors/mirrors, the ToggleDoor()/ToggleMirror() commands are used, see the
scripting reference.

For a door to have metal bulging sounds (instead of default wooden-like ones), its name must contain “metal” or
“tech” either as a prefix or suffix! The same goes for leaf doors: use “nature” anywhere in their name.

Important! For a mirror to work properly, its name must contain the word “mirror”!

4.2 Torches

Torches are generally decorative-only, but it’s good practice to use them to signal activations, timed events, etc. by
turning them on/off.

The name is used to identify the torch/candle in a ToggleLight() command.

You can also set their initial state.

4.3 Switches

The name is used to identify the switch in a ToggleSwitch() command.

You can also set their initial state.

When the switch is activated (used), the script file with the name of the switch (if any) will be executed. You can also
specify an inline quick script to be executed before/instead of the main script.

Switches automatically declare a global runtime-only LUA variable AND a tower-level persistent superglobal integer
(accessible with XXXMetaInt()) [name of the switch]_disabled = 0, with which you can fully disable the switch if set to 1.
Disabled switches don’t even flip, so they’ll never execute their script, not even if the toggling is executed via another
script!

4.4 Edicts

Edicts are used to display a simple wall of text when the player interacts with them.

You can set the mode of the edict to either automatically display a standard dialog with the text specified when used,
or to run a full script. In the script(ure) field, you can specify this text or script.

4.5 Sewers

Sewers are decorative-only by themselves.

The name is used to identify the sewer in a ToggleSewer() command.

You can also set their initial state.

4.6 The tree subset

Tree-themed walls are a special subset of the base palette that you can toggle by pressing the T key in Wall mode.
While the tree subset is enabled, normal walls you place (by “deleting” a wall, i.e. right-clicking) become tree barks,
and wall-void transitions you paint become wall-tree bark transitions. Other tree-themed special walls can be placed
with or without the subset mode enabled; simply select them from the palette.

Mimic Hunter 4 Tower Builder manual

5. Platforms

To create a platform, select the Platforms tool (F2), pick the desired platform from the palette, and left-click on a wall
segment at the desired elevation. To remove a platform, right-click on it with the Platforms tool selected.

By default, placing a platform will not paint the very exact type that is selected, but a random variant of that “family”
(i.e. a group of similar looking platforms in the same row or 2 rows). This ensures that you can create good looking
levels with the least effort. However, if you want to force the exact variant you selected, hold down the left control
while left-clicking.

All types of platforms have the same properties, with only a few exceptions that behave slightly differently.

Platforms with spikes, thorns, or icicles, and hot surfaces will automatically do the respective amount of damage to
the player if they touch it; this can’t be altered. Fungal, snowy and icy platforms have different physic properties, this
also can’t be altered.

5.1 Properties

Name Optional. Needed for accessing the platform from script. When the player steps on a platform,
the script [name of platform].lua will be automatically run (if any). If a critter steps on it, [name
of platform]_a.lua will be run (if any). When the platform is destroyed, [name of platform]_d.lua
will be run (if any).

Type start Lower bound of type identifier (the number seen below each platform in the palette).

Type end Upper bound of type identifier. The platform will be a random type between Type start and Type
end on every reload.

Decay steps Maximum integrity (“health”) of the platform. -1 for indestructible. If >0, the platform will lose 1
point from its current integrity whenever the player or a critter touches it.

Decay current Current integrity of the platform. If lower than the maximum, cracks will be seen. Note: doesn’t
work well with non-block “platforms” like #72-73 (thorns) and #116-119 (floating stones).

Decay wait Minimum delay in seconds between integrity losses. For example, with a decay wait value of 1,
the player would have to stand on the platform for a second before it decays further. For some
platforms with a DoT effect (#108-115), also controls the delay between damage ticks.

Behavior For all platforms except #19 (the one with two spikes on the sides), it controls movement; for
#19, it controls arrow shooting behavior. SetBehavior() can be used to set this behavior in run-
time. Platforms have their independent internal timers, which enables you to pause a behavior
by setting this value to 0, then resume it from the last position or timing when resetting it to >0.
Valid values are:

 0: default (static) — movement / shooting halted
1: slow vertical movement (9 secs for full range) / shoot left
2: medium vertical movement (6 secs) / shoot right
3: fast vertical movement (3 secs) / shoot both ways
4-6: slow/medium/fast horizontal movement (9/6/3 secs), respectively (ineligible for shooter)

[Low limit] For moving platforms: lower vertical range (in elevation) / left horizontal range (in degrees).

[High limit] For moving platforms: upper vertical range (in elevation) / right horizontal range (in degrees).

[Interval] For arrow shooter (#19) only: delay in seconds between arrows. Be advised, don’t use a too low
(<0.5) value unless you absolutely know what you’re doing (for example, a “controlled burst”
that is stopped from script afterwards), as too many arrows will cripple performance!

[Velocity] For arrow shooter (#19) only: speed of arrows.

Quick script Additional script text to be executed (after the stand-alone script file, if any) when the player
stands on the platform. You can add a script up to 700 characters this way. If you need more,
use the .lua file of the platform’s name, or run an additional file with the Run() function.

Mimic Hunter 5 Tower Builder manual

Appendix A — LUA script reference

1. General functions

Run (string fileName)

fileName: name of script file to run, without extension

Runs the specified script file from “[AppData]/Scripts/”. If the given fileName starts with “Plot/”, or does not
contain “/” at all, the game will look for it in a subfolder defined by the Tower’s scriptPath setting. Compiled
(exported) tower files only “carry” the contents of their respective scriptPath folder, so make sure that all your
custom scripts are stored there.

Exec (string script, float delay = 0)

script: LUA script text to run
delay: delay in seconds before execution

Runs the given text as a LUA script (not a file!) after the specified delay. You can embed Run() as script to run
script files with a delay, e.g. Exec(‘Run(“fileName”)’).

int GetMetaInt / int GetSaveInt (string propertyName, int DV = -1)

propertyName: name of custom tower-level / superglobal integer property (variable) to retrieve

Gets the value of propertyName, or DV if it’s not yet declared. For a list of built-in properties, see Appendix B.3.

string GetMetaStr (string propertyName, string DV = “”)

propertyName: name of custom global string property (variable) to retrieve

Gets the value of propertyName, or DV (i.e. default value) if it’s not yet declared.

SetMetaInt / SetSaveInt (string propertyName, int propertyValue)

propertyName: name of custom tower-level / superglobal integer property (variable) to set

Declares propertyName if it hasn’t been yet, and sets its value to propertyValue (overwrites it if it exists.)
Note: for all “Single tower” purposes, the two functions (and their Get methods) are practically identical!

SetMetaStr (string propertyName, string propertyValue)

propertyName: name of custom global string property (variable) to set

Declares propertyName if it hasn’t been yet, and sets its value to propertyValue. (Overwrites if it exists.)

ShowDialog (string image, string caption, string sound = nil, string script = nil, string infoText = nil, float delay = 0.25,
int d = 0, bool freezeTime = true)

image: name of image to show in dialog, see Appendix B.1
caption: text to display in the dialog
sound: name of sound to play when the dialog appears, see Appendix B.2
script: script text to execute when the dialog is closed (use Run(“xxx”) to execute a file)
infoText: text to show in the bottom-screen info bar
delay: delay in seconds before the dialog appears
d: position of dialog; 0 = bottom half of screen, 1 = upper half of screen

Shows a dialog with the specified contents & features. The game is always paused while a dialog is active. The
user will either press Attack, Jump, Confirm or Cancel to close the dialog; global variable “_action” will store
this result until the next dialog is closed: Attack = 2, Jump/Confirm = 1, Cancel = 0; e.g. if you define a script
“myVariable = _action” to run when the dialog closes, myVariable will store how the dialog was closed—you
can create choices this way, etc. (a good practice is to use the info bar to display what to press). When using
freezeTime == false, be extra careful not to put the player in an awkward position!

Mimic Hunter 6 Tower Builder manual

2. World interaction functions

ToggleLight (string name, bool force = false, bool value = false, float delay = 0)

name: name of wall to toggle light-type component of
force: false = state of light will be toggled (on->off, off->on); true = state of light will be set to value
value: state to set light to if force is true

Toggles/sets the state of the specified light-type wall.

ToggleDoor (string name, bool force = false, bool value = false, float delay = 0)

name: name of wall to toggle door-type component of
force: false = state of door will be toggled (open->closed, closed->open); true = state of door will be set to value
value: state to set door to if force is true

Toggles/sets the state of the specified door-type wall.

ToggleMirror (string name, int state, float delay = 0)

name: name of wall to toggle mirror-type component of
state: state to set mirror to; 0 = sleeping (inactive), 1 = awaking (inactive), 2 = awake (active)

Sets the state of the specified mirror-type wall.

ToggleSwitch (string name, bool force = false, bool value = false, bool doScript = true, float delay = 0)

name: name of wall to toggle switch-type component of
force: false = state will be toggled (up->down, down->up); true = state will be set to value
value: state to set switch to if force is true
doScript: true = execute scripts on toggle like manual activation; false = do not execute scripts

Toggles/sets the state of the specified switch-type wall.

ToggleSewer (string name, bool force = false, bool value = false, float delay = 0)

name: name of wall to toggle sewer-type component of
force: false = state of sewer will be toggled (on->off, off->on); true = state of sewer will be set to value
value: state to set sewer to if force is true

Toggles/sets the state of water from the sewer.

int GetDoorState (string name)

name: name of door

Returns the state of the specified door (0 = open; 1 = closed), or -1 if it doesn’t exist.

int GetMirrorState (string name)

name: name of mirror

Returns the state of the specified mirror, as states explained at ToggleMirror(), or -1 if it doesn’t exist.

SetBehavior (string name, int behavior = 0, float delay = 0)

name: name of eligible platform

Sets a platform’s behavior. Use this to dynamically control “elevators”, spear launchers, etc.

Mimic Hunter 7 Tower Builder manual

SetAtmo (int tier, int channel, float value)

tier: 0 = ground; 1 = midtower; 2 = top
channel: 0 = red; 1 = green; 2 = blue; 3 = sky exposure; 4 = HDR (i.e. highlight bloom) level
value: intensity of channel, 0-1

Use it to procedurally control ambient lighting. Sets the color or exposure value of the specified channel of the
specified tier (values between exact tiers are extrapolated linearly), as also explained in Tower Settings.

Note: changing HDR will automatically re-tune the intensity of player-centered lights to avoid over-exposure. If
you experience a small change in player “brightness” under some circumstances, that is normal.

float GetAtmo (int tier, int channel)

Retrieves an atmospheric value, as per definitions seen at SetAtmo().

SetSnowfall / SetRainfall / SetFirefall (bool isOn = true)

Enables (isOn = true) or disables (false) the respective atmospheric effect. If enables, it will also automatically
disable the other two effects if active. Atmospheric effects don’t have tunable parameters as of now.

3. Item-related functions

SpawnItem (string name, string image, string script, int story, float elevation, int section, float size = 1,
bool interactable = true, Vector3 worldPos = zero {0, 0, 0})

name: name of item (for reference)
image: appearance if item, i.e. name of image to display item as, see Appendix B.1
script: script to execute when the item is picked up or touched (if it’s a checkpoint)
story, elevation, section: position of item, see Chapter 3 for reference (Note: stories: 0-x; sections:1-24/16)
size: size of item, relative to its normal size (clamped between 0.1 and 2)
interactable: if true, item interacts with player; if false, it’s only a decoration (no scripts will run)
worldPos: if not zero, item will be spawned at exact coordinates in 3D space instead of standard positioning

Spawns the specified item. If name is nil or empty (“”), the item can be still picked up, but it won’t appear in the
inventory. If name starts with “checkpoint”, the item will be treated as a checkpoint irrespective of image ==
“altar” or not. Also, if the item has a non-null name and you set image to “altar”, it will become a checkpoint
automatically. If name contains “DoT” (case sensitive!) and interactable == true, then instead of picking it up,
the script will be run every second while the player is standing at/”in” the item. When run from the player’s or
a critter’s onDeath event, you can pass _lastPlayerPos /_lastCritterPos as worldPos to spawn the item at the
location of the (last related) death. Items created with worldPos will instantly “fall” to the first platform below!

DestroyItem (string name, bool showDebris = true)

Instantly destroys the item of the given name in the tower (not in the inventory; see RemoveItem()) — use
Exec() to make it delayed. The argument showDebris controls if visual & audial debris effects will be played.

bool HasItem (string name)

Returns if the player has the item of the specified name. Always returns true if God mode is on in the Editor.

RemoveItem (string name) — Removes the item with the specified name from the inventory.

SetItemDeadDrop (string name, string script = {safe neutral default; don’t use empty or nil!})

Sets the specified item to be dropped (i.e. removed from inventory) when the player dies. The specified script
text will also be run (if any). Also use SpawnItem() with _lastPlayerPos as worldPos to actually drop an item!

SetItemsPerma () — Sets all items in the inventory to permanent (non-droppable).

ToggleGargoyle (string name, bool isWaterRunning, float delay = 0)

Toggles water from a gargoyle on/off.

Mimic Hunter 8 Tower Builder manual

4. Miscellaneous functions

MainMenu_Quit ()

Returns to the Main Menu. Use it to conclude a level.

PlaySound (string id, bool forceRestart = true)

Plays a sound from the assorted sounds library (if not playing OR forceRestart == true), see Appendix B.2.1.

SetBossMode (int mode [0: none, 1: small, 2: big, 3: victory, 4: small w/ beats, 5: big w/ beats])

Sets “boss” (i.e. special game event) mode, with the appropriate musical and visual transitions.

ShowMessage (string message, string dialogSoundID, string assortedSoundID, float duration, float r, float g, float b)

Displays a message (like “Secret found!” or a countdown) at the top-center of the screen, with optional sounds,
duration, and color (r, g, b are 0-1).

GroundContent (string id, bool state = true)

Toggles additional ground content on/off. Recommended use in startup script. For IDs, see Appendix B.5.

SetBlur (float size, int iterations = 2)

Set camera blur (interface not affected). Set size to 0 to disable completely.

SetGrayscale (float factor) / SetSepiaTone (float factor)

Set camera grayscale / sepia tone post effect factor (0-1). 0 disables the effect completely. UI not affected.

Quake (int steps = 20, float stepDuration = 0.1, float strength = 0.25)

Shakes the camera. Use PlaySound() to also play an appropriate sound (e.g. “debris_1”, “debris_2”)!

5. Player-related functions

AddMaxHealth (int amount)

Adds amount extra, filled health slots (“hearts”) permanently.

AddMaxMana (int amount)

Adds amount × 25 maximum (and current) mana.

AddDiamonds (int amount)

Adds amount Blood diamonds. You can use a negative value to take away some.

SetDiamonds (int amount)

Instantly sets the amount of Blood diamonds the player has, taking away any excess.

DoDamage (int amount, bool blockable = false, bool bypassesEnergyShield = true)

Deal amount damage to the player instantly. You can also specify if it is blockable, and/or bypasses the energy
shield or not.

DrinkHealth (int amount, int soundID = 2)

Instantly restores health of the specified amount, up to the maximum. Set soundID to -1 for no sound. (See
Appendix B.2 for internal ID of eligible sounds.)

Mimic Hunter 9 Tower Builder manual

DrinkMana (int amount, int soundID = 2)

Instantly restores mana (energy) of the specified amount, up to the maximum. Also see DrinkHealth().

PickupDagger (int amount)

Instantly gives the specified amount of daggers to the player. Will not exceed the maximum (10).

ReturnToGround (bool lockControls = false)

Returns the player to the ground, outside the tower, optionally locking controls. Useful for end-level cutscenes.

SetPlayerLight (bool state)

Toggles the light centered on the player. Off is useful for creating pitch dark or heavily ambient scenes.

Teleport (int story, float elevation, int section, bool ignoreVelocity = false)

Instantly repositions the player to the specified coordinates. If ignoreVelocity is true, the player will lose all
speed in the process, allowing him to avoid damage when teleporting out from a free fall, or accidentally falling
off the target platform if he was moving when the teleportation commenced.

6. Critter-related functions

int SpawnCritter (int critterType:0-12, int story, float elev, int section)

Spawns a full health critter at the specified coordinates with default properties and returns its internal id for
use with SetCritter(), ReanimateId() or DamageCritterId().

critterType: 0 = sack; 1 = common chest; 2 = ancient chest; 3 = doombat; 4 = runic sack; 5 = fungal chest;
6 = crystallic ancient chest; 7 = skeleton; 8 = stone spawn (small); 9 = stone guardian (the big one );
10 = horned heavy sack; 11 = Halloween creeper; 12 = undead Barnabas

SetCritter (int id, float erH = 1, float erV = 3, float fleeFactor = 0.25, int HP = -1, bool returnToStart = false,
string onDeath = nil)

Sets additional properties for a critter spawned via script. Pass the internal id of the critter as id.

Reanimate (string name, int health) / ReanimateId (int id, int health)

Instantly resurrects the skeleton (only critterType==7) of the given name / id with the given health. By very
definition, the latter can be only used with critters created via script.

DamageCritter (string name, int amount) / DamageCritterId (int id, int amount)

Deal amount damage to a critter by name / id (returned by SpawnCritter()) instantly.

SpawnStone (int story, float elev, int section, float size = 1, int damage = 1)

Spawns a falling stone that can damage both the player and critters on collision (and can be avoided via hiding
in an alcove). For best visual results, spawn at least two full stories higher than the player’s actual position, so
the stone will “fall into” the screen bounds.

7. Additional structure manipulation (for advanced usage)

CreatePlatform (int story, float elev, int section, int tier_lo = 0, int tier_hi = 15, string name = nil,
int decay_steps = -1, int decay_current = -1, float decay_interval = 1,
int behavior = 0, float limit_lo = 0, float limit_hi = 0, string script = nil)

Instantly creates a platform with the given properties.

Mimic Hunter 10 Tower Builder manual

CreateWall (int story, int section, string w, string name = nil, int state = 0, string target = nil)

Instantly creates a special wall with the specified properties. For edicts, state refers to mode (0 = text only, 1 =
script); for others (doors, etc.), please see the respective Toggle function for state reference. The parameter w
identifies the wall’s type, as per Appendix B.4.

DeletePlatform (string name) — for immediate removal

Instantly deletes the platform (without any effects) of the given name.

RemovePlatform (string name, bool removeFromPlot = true, float delay = 0) — with visual destruction

Instantly destroys the platform of the given name with both visual & audio effects.

SetDoorTarget (string name, string target)

(Re)sets the target of a door. A door can only have one target at a given time, but with some scripting, you can
easily create doors that lead to different destinations based on the circumstances. Please note, though, that the
script that fires when the player passes through the door can’t be used to set the target of that very transition,
as it will only take effect afterwards!

8. LUA extensions

The following functions are based on the exposed core functions described above, and are programmed in LUA. See
the “LibExtensions.lua” file for more insight & templates for your own scripts!

FadeToDark (float duration = 5, float stepping = 0.1, float factor = 0)

Fades all tiers and channels (excl. HDR) to their current value × factor over duration seconds, with ticks every
stepping seconds.

FadeBack (float duration = 5, float stepping = 0.1)

Fades all tiers and channels (excl. HDR) back to their initial values (i.e. before the last FadeToXXX() call) over
duration seconds, with ticks every stepping seconds. Always call a FadeToXXX() at least once before this!

Countdown (float from = 10, float to = 0, float stepping = -1)

Initiates a textual countdown in the center-top of the screen (via ShowMessage()) with tick sounds, ranging
from from to to, with stepping delay and value decrease between each step.

Grayscale (float from = 0, float to = 1, float duration = 1)

Gradually changes grayscale effect value (0-1) between from and to in duration seconds (in 0.1 sec steps).

SepiaTone (float from = 0, float to = 1, float duration = 1)

Gradually changes sepiatone effect value (0-1) between from and to in duration seconds (in 0.1 sec steps).

SpawnPlatform (float delay, int story, float elev, int section, int tier_lo, int tier_hi, string name,
int decay_steps, int decay_current, float decay_interval)

Spawns a destructible platform with “popping” visual & audio effects after delay seconds (the actual platform
emerges 0.05 seconds later). This function is best used after destroying a platform either via script or by decay
(in this case call it from [name of platform]_d.lua) to re-spawn it with the same name, so the player can try the
session again, indefinitely.

Lightning ()

Full-screen lightning effect with sound. Lasts 0.25 seconds. Can’t be called again while in progress.

Mimic Hunter 11 Tower Builder manual

Appendix B.1 — Assorted image (dialog/item) name reference

Use these with ShowDialog() or SpawnItem() as the image (string) parameter.

Items marked with * should be used in dialogs only (not as an actual item to be placed).
Items marked with ** are (non-)sprite-based special effects and are absolutely not suitable for use in a dialog.
Diamond ***: if used with SpawnItem(): can’t be named and can’t use script (set both to nil!), and won’t be stored in
saved game, but can be picked up like the normal ones dropped by critters.
Info in () is not part of the identifier. 

amulet_air
amulet_earth
amulet_fire
amulet_ice
amulet_void
altar
Barnabas *
Barnabas_ghost *
Barnabas_undead *
Barnabas_apparition (animated, full body) **
brazier_air
brazier_earth
brazier_fire
brazier_ice
brazier_void
book_1
book_2
boot
bush
candelabre
crystal
dagger
diamond ***
flower
fruit
fungus_1_green
fungus_1_yellow
fungus_2_green
fungus_2_yellow
fungus_3_green
fungus_3_yellow
fuse_key
fx_fire **
fx_frozen_mist **
fx_poison_cloud **
gargoyle_1
gargoyle_2
gargoyle_3
grapes
heart *
hive_lantern
key_1
key_2
key_3

keystone_earth
keystone_fire
keystone_space (void)
keystone_water (ice)
keystone_wind (air)
mana
necklace
petri_1 (Ry-Ga)
petri_1_eyes
petri_1_frozen
petri_2
petri_2_frozen
petri_3
petri_4
petri_5 (deer)
petri_6 (bird 1)
petri_7 (bird 2)
petri_8 (squirrel)
plant_1_green
plant_1_yellow
potion
rapier *
warlock *
Ratimousse *
Ratimousse_angry *
Ratimousse_beaten *
Ratimousse_dead *
Ratimousse_grinning *
Ratimousse_scared *
Ratimousse_smiling *
Ratimousse_thinking *
ring
ring_air
ring_earth
ring_fire
ring_ice
ring_void
rune
scroll
statue
tissue
tree_face *
X5_x_Edict_01 *
X5_x_Edict_02 *
X5_x_Edict_03 *

Mimic Hunter 12 Tower Builder manual

Appendix B.2 — Sound name reference

1. Generic (assorted) sounds

Use these with PlaySound() as the id parameter, or with ShowMessage() as the assortedSoundID parameter.

Internal IDs are in (), you can use these with DrinkXXX() functions, for example.

altar (12)
ambient_1 (15)
ambient_2 (16)
click (7)
debris_1 (10)
debris_2 (11)
door_bulge (0)
door_bulge_metal (17)
door_close (4)
door_close_metal (19)
door_leaves (28)
door_open (3)
door_open_metal (18)
door_stone (20)
door_unlock (9)
drink (2)
mirror_1 (13)
mirror_2 (14)
pickup (8)
resurrect (6)
switch (5)
switch_branch (27)
switch_metal (21)
tick (22)
thunder_1 (23)
thunder_2 (24)
wind_1 (25)
wind_2 (26)

2. Dialog sounds

Use these with ShowDialog() as the sound parameter, or with ShowMessage() as the dialogSoundID parameter.

dark_1
dark_2
die
find
happy
idea
mystery
ominous_1
ominous_2
ominous_3
success
suspicion
victory

Mimic Hunter 13 Tower Builder manual

Appendix B.3 — Predefined/reserved meta properties

These string/integer meta properties are not “reserved” per se, but are used by the game internally. Use caution when
overriding them via scripting—only properties marked by * should be ever accessed for write by script, and only in
special cases!

1. Tower meta strings

Access with GetMetaStr()/SetMetaStr().

GUID Global Unique Identifier of tower (if “forking” a level, remember to get a new GUID in Settings!)
towerName name of tower
towerAuthor author of tower
towerDescription description of tower
deadline * in seconds; stored as string for specific reasons
scriptPath path relative to “[Mimic Hunter user data]/Scripts/”
startupScript script file to run (from tower’s script folder) when tower is first loaded (game start)
onDeath * script text to execute when player dies. Will not override default dialog, use only for other things!
onDeadline * script text to execute when deadline expires (Time attack & Survival only). If none, default will run.

2. Tower meta integers

Access with GetMetaInt()/SetMetaInt().

levelType 0 = Short story, 1 = Time Attack, 2 = Survival
difficulty 0 = easy, 1 = normal, 2 = hard
groundset 0-4
icon 0-6
snowfall 0-1
rainfall 0-1
firefall 0-1
pe_blur * strength of blur post-effect (0-1000, corresponds to float value of 0-10); default: 0
pe_grayscale * strength of grayscale post-effect (0-100, corresponds to float value of 0-1 as percent); default: 0
pe_sepia * strength of sepia post-effect (0-100, corresponds to float value of 0-1 as percent); default: 0
playerLight * 0 = off, 1 = on (default)

+ for each custom-named switch, treat [name of switch]_disabled as reserved.

3. Save integers

Access with GetSaveInt()/SetSaveInt().

towerTimeElapsed * Note: in rare cases, you might need to modify it to add a bonus/penalty to mission time.

Mimic Hunter 14 Tower Builder manual

Appendix B.4 — Wall type ID reference

Use these with CreateWall() as the w (string) parameter. Names are case-sensitive, as always.

Walls are in the same exact order as in the wall painter (here: top to bottom by column).

Sets: X1 = frozen; X3, X4 = yellow/green fungal; X5 = sewers, edicts; X6 = oriental; X7 = demonic; X9 = ruined walls
(contd. on next page)

Alcove_01
Alcove_02
Alcove_03
Door_01
Door_02
Mirror
Ivy_01
Ivy_02
Ivy_03
Switch
Tentacles_01
Tentacles_02
Tentacles_03
Thorns_01
Thorns_02
Thorns_03
Torch_01
Torch_02
Torch_03
Window_01
Window_02
Window_03
Window_04
Window_05
X1_Alcove_01
X1_Alcove_02
X1_Alcove_03
X1_Door_01
X1_Door_02
Mirror_02 (icy)
X1_Door_04
X2_Chains
X3_Alcove_01
X3_Alcove_02
X3_Alcove_03
X3_Door_01
X3_Door_02
Mirror_03 (fungal)
X3_Fungi_01
X3_Fungi_02
X3_Fungi_03
X3_Fungus_large
X3_Ivy_01
X3_Ivy_02
X3_Ivy_03
X4_Fungi_01
X4_Fungi_02
X4_Ivy_01

X4_Ivy_02
X4_Ivy_03
X4_Moss_01
X4_Moss_02
X5_Sewer_01
X5_Sewer_02
X5_Sewer_03
X5_Sewer_04
X5_x_Edict_01
X5_x_Edict_02
X5_x_Edict_03
X6_Alcove_01
X6_Alcove_02
X6_Door_01
X6_Door_02
X6_Door_03
X6_Lamp_01
X6_Switch_01
X6_Switch_02
X6_Switch_03
X6_Torch_01
X6_Trellis_01
X6_Trellis_02
X6_Trellis_03
X6_Window_01
X6_Window_02
X7_Alcove_01
X7_Alcove_02
X7_Door_01
X7_Door_02
X7_Lamp_01
X7_Pipes_01
X7_Pipes_02
X7_Pipes_03
X7_Switch_01
X7_Switch_02
X7_Torch_01
X7_Torch_02
X7_Window_01
X8_Bare
X9_Door_00 (2x2 demon gate)
X9_Door_01 (2x2 demon gate)
X9_Door_10 (2x2 demon gate)
X9_Door_11 (2x2 demon gate)
X9_Wall_01
X9_Wall_02
X9_Wall_03_flip
X9_Wall_04_flip

X9_Wall_11
X9_Wall_12
X9_Wall_13_flip
X9_Wall_14_flip
X9_Wall_15
X9_Wall_16
X9_Wall_17_flip
X9_Wall_18_flip
X9_Wall_21
X9_Wall_22
X9_Wall_23_flip
X9_Wall_24_flip
X9_Wall_25
X9_Wall_26
X9_Wall_27_flip
X9_Wall_28_flip
X9_Wall_31
X9_Wall_32
X9_Wall_33
X9_Wall_34
X9_Wall_35
X9_Wall_36
X9_Wall_37
X9_Wall_38
X9_Wall_41
X9_Wall_42
X9_Wall_43
X9_Wall_44
X9_Wall_45
X9_Wall_46
X9_Wall_47
X9_Wall_48
X9_Wall_51
X9_Wall_52
X9_Wall_53
X9_Wall_54
X9_Wall_61
X9_Wall_62
X9_Wall_63
X9_Wall_64
X9_Wall_71
X9_Wall_72
X9_Wall_73
X9_Wall_74
X9_Wall_75
X9_Wall_76
X9_Wall_77
X9_Wall_78 (void)

Mimic Hunter 15 Tower Builder manual

Y0-1: the tree subset (left to right, top to bottom)

Y0_Tree_01 Y0_Tree_02 Y0_Tree_03 Y0_Tree_04
Y1_Alcove Y1_Bark_Gash Y1_Door_01 Y1_Door_02
Y1_Face_01 Y1_Face_02 Y1_Sewer Y1_Switch
Y1_Vines_01 Y1_Vines_02 Y1_Vines_02_b Y1_Vines_03

Appendix B.5 — Ground content ID reference

Use these with GroundContent() as the id parameter.

blood_tree A large, blossoming blood tree to the left, and a small one to the right of the tower, plus
additional rocks/rubble around. (+rep #AdvJam2017)
Not really suitable for icy setting, but compatible with all other ground content sets.

woods_west A large group of red-leaved trees to the West with falling leaves.
Don’t use with frozen elements. Compatible with bare sets.

woods_east A smaller group of red-leaved trees to the East.
Don’t use with frozen elements. Compatible with bare sets.

bare_woods_west A large group of bare trees to the West.
Compatible with any other woods or bushes.

bare_woods_east A smaller group of bare trees to the East.
Compatible with any other woods or bushes.

bushes A large number of red-leaved bushes scattered all around.
Don’t use with frozen elements. Compatible with bare sets.

bare_bushes A large number of bare bushes scattered all around.
Compatible with any other woods or bushes.

frozen_woods A large number of frozen trees scattered all around.
Don’t use with standard (red-leaved) elements. Compatible with bare sets.

frozen_bushes A large number of frozen bushes scattered all around.
Don’t use with standard (red-leaved) elements. Compatible with bare sets.

fungal Bare trees and lots of various fungi on them and on the ground.
Not for use with any other set, though not explicitly incompatible.

desolate A light sandstorm with wind sound effects and tumbleweeds.
Can be used with any other set, within bounds of reason! 

volcanic Smoke and fire along the road.
Compatible with most sets.

snowman A Mimic snowman to the left of the tower on the road.
Use with icy theme. Compatible with most sets, but best used with “frozen” only.

